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Prediction of fibre strength at the critical 
length: a simulation theory and experimental 
verification for bimodally distributed carbon 
fibre strengths 
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A computer simulation model of fragment distribution with respect to the fibre strength in a 
single-filament composite test is developed using the bimodal Weibull statistics. The 
predictions of the theory are examined with experimental results for AU carbon fibres coated 
by zirconium-n-propoxide or a zircoaluminate complex. Weibull analysis reveals a bimodal 
distribution of fibre strengths, in which the fractions of low- and high-strength populations 
vary with gauge length. It is seen that the simulation results are in good agreement with 
experimental data if the best fit model of strength distribution is applied. Thus, the use of a 
bimodal distribution term in the simulation theory yields a predicted strength at the critical 
length which is in good agreement with the results of extrapolation of experimental data, 
while the unimodal distribution term leads to overestimation of the strength. 

1. In troduc t ion  
Carbon fibre-reinforced composite materials have be- 
come very attractive structural materials in many 
branches of aerospace and other industries because of 
their light weight combined with high strength and 
modulus. In the fibre-reinforced composite system, 
one of the most important controlling factors is the 
interracial property which relates to the capacity of 
stress transfer from the matrix to the reinforcing fibre. 
Although the high strength of a composite is due to 
strong bonding between the fibre and the matrix, a 
low interfacial bonding strength due to a relatively 
weak bonding improves the fracture toughness of the 
composite. For this important reason, many investiga- 
tions are devoted to research characterizing the inter- 
facial behaviour in the composite system. 

There are various techniques to characterize inter- 
facial shear strength between the fibre and matrix [l]. 
Among them, the single-filament composite (SFC) test 
is frequently used to study interracial shear strength in 
the composite [2-6]. This test was originally used to 
investigate the interfacial shear strength in the 
fibre/metal composite system by Kelly and Tyson [2]. 
The method is based on force balance when tensile 
stress is transferred to the interface parallel to the fibre 
axis. Assuming that the matrix is perfectly plastic, the 
shear stress, z, is a constant along the critical length, Ic. 
Therefore, the relationship between fibre strength, sf, 
and the shear stress at the critical length is 

Sf.d 
- 21 c (1) 
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where d is the diameter of the fibre. In Equation 1, the 
critical length and diameter of the fibre can be ob- 
tained from the SFC test. However, it is impractical 
to measure directly the fibre strength at the critical 
length, because the critical length is too short for 
measurement by conventional tensile tests. It is the 
usual practice to extrapolate tensile strength data at 
measurable gauge lengths to the critical length using 
an approximately linear relationship between the fibre 
strength and the logarithm of gauge length [7]. 

Recently, a probability model and a Monte Carlo 
method were used to predict a realistic value for the 
interracial strength between the fibre and the matrix 
[8, 9]. A notable new development [10] is the formula- 
tion of an exact theory to express the  relationship 
between the fibre fragmentation and the underlying 
fibre statistical strength iri the SFC test. These simu- 
lation theories are based on the unimodal Weibull 
distribution for the fibre fracture. Generally, the 
unimodal Weibull distribution does not fit well the 
experimental data because of the presence of various 
kinds of imperfections such as surface defects, and 
internal defects including misoriented crystallites and 
undetectable defects [11-14]. But, the Weibull dis- 
tribution curve predicted from the bimodal distribu- 
tion is known to be a better fit with the experimental 
data than the unimodal distribution 1-15, 16]. For this 
reason, the unimodal distribution model used in simu- 
lation theories needs to be modified to a multimodal 
distribution model if the fibre strength data reveal 
more than one type of defect. 

The objective of this paper is to obtain the fibre 
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strength at the critical length using the exact theory 
developed by Curtin [10], but with bimodal Weibull 
statistics, and then compare the strength obtained by 
simulation with the strength obtained by extrapol- 
ating the experimental data. The fibres investigated 
are AU carbon fibres coated in the laboratory by 
zirconium-n-propoxide (ZNP) or zircoaluminate com- 
plex (AZ). The choice of these coated fibres for the 
study is related to the potential importance of zirconia 
coating in interphase modification of graphite fibre- 
reinforced metal matrix composites [17]. 

2. A n a l y s i s  o f  t h e  f i b r e  s t r e n g t h  
The strength of a brittle fibre is often analysed by the 
Weibull statistical model which is based on the weak- 
est link theory. According to this theory, the most 
severe defect among all defects existing on the fibre 
dominates the fibre failure process [18]. So, the uni- 
modal cumulative Weibull distribution for the fibre 
strength in which only one defect controls the fibre 
failure process is 

F(s) = 1 - exp \ s o /  J (2) 

where m and s o are the shape parameter and the scale 
parameter, respectively. The parameters m and s o can 
be obtained by the maximum likelihood method of 
estimation as follows [19] 

s'plns~ 
1 1 " 
__ + 2 1 n s  i i=1 - 0 (3) 

Si 
f = l  

l_ . sT'  o:O,a) ,4, 
where n is the sample size and s~ the fibre strength of 
the ith order, where the strengths are placed in ascend- 
ing order, s I being the lowest strength and s, the 
highest strength. The shape parameter, m, can be 
found by an iterative procedure using Equation 3, 
and if m is known, So can be determined easily from 
Equation 4. 

However, the unimodal distribution function based 
on the single defect model does not fit well the experi- 
mental data if there exist defects of various kinds 
rather than of only one kind. Therefore, a multimodal 
distribution function is required if the defect types are 
more than one. The cumulative bimodal Weibull dis- 
tribution function based on the presence of two kinds 
of defect is described as follows [14] 

F(s) = 1 -  pexp kSol/ J 

p + q = 1 (6) 

where p and q are portions of low-strength and high- 
strength populations, respectively, and ml, m2, Sol 
and So2 are the shape and scale factors for low- 
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strength and high-strength portions, respectively. The 
probability density function of the Weibull distribu- 
tion can be obtained by differentiating the cumulative 
distribution function. Generally, the low-strength por- 
tion is generated by defects caused by surface damage 
during handling and the high-strength portion is due 
to the internal defects [20]. 

3. Simulat ion model of f ragmentat ion  
versus f ibre strength 

In order to predict the fibre strength at the critical 
length in the SFC test, various methods are used such 
as Weibull statistics or extrapolation of experimental 
strength data at different gauge lengths. However, 
these methods cannot give information regarding the 
relationship between the fibre fragmentation and fibre 
strength while the fibre is broken successively during 
elongation of an SFC specimen. The relationships of 
the number of breaks, N, and the length of remaining 
fibre, L, with respect to the fibre strength, s, which was 
proposed by Curtin [10], are 

dL d5 
ds - NSP(5; 11) d~ (7) 

dN NP(5; q) d5 
ds - dss + f (s ,  L*) (8) 

L* = N t ~(x - 25) P(x;q) dx (9) 
,}25 

where 5 is the recovery length which is equal to Ic/2, 
and q = 5N/L.  P(5; q) is the unique strength fragment 
distribution 

P(5;q) = ~f'oqt(r() dq' (10) 

with 
exp( - 27) 

- ( 1 1 )  q* - q 

where 7 is Euler's constant ( =  0.5772) and q* is 
0.7476 [10]. 

The strength distribution term in Equation 8 based 
on the power series of Weibull distribution for the 
fibre length, L, is 

L * m ~ ( : ~  "-1  (12) 
f ( s ,L* )  - L o s o \ s o /  

However, this strength distribution term would not be 
correct if the strength distribution in actual experi- 
ments shows multiple modes. Therefore, the strength 
distribution term needs to be modified to the multi- 
modal term if necessary. 

Such a modified form of Equation 12 for bimodal 
distribution is 

LoL Sol\So1// 

mj 
+ (13t 

The relationship between the fibre strength and frag- 
mentation can be predicted by integrating Equations 7 



and 8 with strength distribution terms from either 
Equation 12 or 13. The differential equations can be 
solved easily using a numerical method with an iter- 
ative procedure. In this paper, the simulation is per- 
formed with Advanced Continuous Simulation 
Language (ACSL). From the simulation results, the 
fibre strength when there is a maximum number of 
breaks can be considered as the fibre strength at the 
critical length. 

4. Experimental procedure 
SFC test specimens were prepared in order to evaluate 
and compare the simulation model with the experi- 
mental data. As a reinforcing fibre, Hercules high- 
modulus untreated carbon fibre (AU type fibre) was 
used. The epoxy matrix resin diluted with 10 wt % 
phenyl glycidyl ether (Aldrich Chemical Co.) was di- 
glycidyl ether of bisphenol-A (Epon 828, Shell Chem- 
ical Co.) and cured at 150~ with 14.5p.h.r. 
m-phenylenediamine (Aldrich Chemical Co.). Before 
embedding in an epoxy matrix, the fibres were coated 
by zirconia or zircoaluminate. As coating materials, 
zirconium-n-propoxide (Alpha Products Co.) and zir- 
coaluminate solution (Cavco Mod M-l,  Cavedon 
Chemical Co., Inc.) were prepared. The zirconium-n- 
propoxide was mixed with ethyl acetoacetate at one- 
to-one molar ratio in order to reduce the reaction rate 
with moisture in air. The zircoaluminate (AZ) solution 
and the stabilized zirconium-n-propoxide (ZNP) solu- 
tion were diluted by ethanol with a volume ratio of 
1/20. The solutions were stirred for 4 h and stored 
in plastic containers. The AU fibres were fixed on 
stainless steel frames with aluminium tapes and dip- 
ped into the solutions. The frames were withdrawn 
vertically at a speed of 20 cmmin -1. These coated 
fibres were hydrolysed in hot steam (60 ~ for 15 min 
and dried at 180 ~ for 30 rain. The SFC samples were 
made by the method described elsewhere [4]. 

The tensile strengths of individual fibres mounted 
on paper frames were measured using a tensile testing 
machine with the crosshead speed of 1 mm min-  t. The 
load readings were recorded on a chart by an x - y  

recorder. About 40 fibre specimens were tested for 
each test at a particular gauge length: gauge lengths of 
3, 6.5, 10 and 22 mm were chosen in these experiments. 
The tensile strength in each test was analysed by both 
unimodal and bimodal Weibull statistics. 

5. Results and discussion 
5.1. Analys is  of s t rength d is t r ibut ion 
From the tensile strength tests of the AU fibre with 
different coatings, the strength distributions of the 
different fibres were analysed by Weibull statistics. 
Fig. 1 shows the cumulative strength distribution of 
the fibre coated by the stabilized ZNP solution at 
6.5 mm gauge length. The experimental strength data 
were estimated from F(s) = i / (N + 1), where N is the 
total number of samples tested and i is the ith number 
in ascendingly ordered strength data. It is easily seen 
that the bimodal distribution curve (Fig. lb) is a better 
fit to the experimental data than the unimodal dis- 
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Figure l Cumulative Weibull distribution curves, (a) unimodal and 
(b) bimodal for the strength of ZNP-coated AU fibres (gauge length 
6.5 mm). 
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Figure 2 Bimodal Weibull distribution of AZ-coated AU fibres, 
gauge lengths: (a) 22 mm, (b) 10 ram, (c) 6.5 mm and (d) 3 ram. 

tribution curve (Fig. la). The Weibull parameters for 
bimodal distribution are presented in Tables I and II 
for the two types of fibre tested. The results indicate 
the presence of two kinds of defect governing the 
strength of the fibre. 

Fig. 2 shows estimated distribution curves of the 
tensile strengths for the AU fibre coated by AZ solu- 
tion, at different gauge lengths. The low-strength 
population due to surface flaws on the fibre is de- 
creased and the high-strength population caused by 
internal defects is increased as the gauge length is 
reduced. At 3 mm gauge length, the lowest strength 
population due to surface damage has disappeared. 
However, the strength distribution still shows bi- 
modality because of the appearance of a new popula- 
tion at the highest strength region. From the result, it 
is noted that the AU fibre coated by AZ solution h a s  
three kinds of defect and at least two of these defects 
controlled the strength of the fibre at any one gauge 
length used in the experiment. 

The Weibull plots of tensile strengths at different 
gauge lengths for the AU fibre coated by ZN P  solu- 
tion are shown in Fig. 3. The trends of the distribution 
curves are similar to the plots in Fig. 2. The lowest 
strength population is eliminated at the lowest gauge 
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TABLE I Simulation results using bimodal Weibull distribution for AZ-coated AU fibre at different gauge lengths, L 

L Population ~ Weibull parameter Strength b 

(ram) m So(MPa) (MPa) 

Number of 

fragments b 

22 31/88 9.03 3477 6360 55 
7/38 9.02 4990 

10 26/39 9.35 3607 6060 56 
13/39 13.27 4805 

6.5 23/40 9.17 3653 6210 56 
17/40 8.37 5272 

3 27/38 10.48 4670 6650 57 
tl/38 10.93 6324 

Ratios of low- and high-strength populations. 
Estimated values. 

T A B L E I I Simulation results using bimodal Weibull distribution for ZNP-coated AU fibre at dillerent gauge lengths, L 

L Population" Weibull parameter Strength b Number of 

(ram) m So(MPa) (MPa) fragments b 

22 22/40 12.47 3374 5370 43 
18/40 10.02 4752 

t0 9/40 10.7 3229 5510 42 
31/40 11.26 4708 

6.5 30/38 11.2 4355 6070 46 
8/38 51.74 5344 

3 16/39 13.43 4226 5750 44 
23/39 14.26 5691 

a Ratios of low- and high-strength populations. 
Estimated values, 
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Figure 3 Bimodal Weibull distribution of ZNP-coated AU fibres, 
gauge lengths: (a) 22 mm, (b) 10 mm, (c) 6.5 mm and (d) 3 mm. 

length, and a new popula t ion  appears at the high end. 
However, the low-strength por t ion in this case, parti- 
cularly at gauge lengths 10 m m  and  lower, is smaller 
than  that in Fig. 2. The severity and dis t r ibut ion of 
surface flaws of the fibre seem to have been altered by 
the appl icat ion of a different coating. 

5 . 2 .  S i m u l a t i o n  o f  f r a g m e n t  d i s t r i b u t i o n  

In this section, computer  s imulat ion results of the 
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Figure 4 Predicted dependence, on the Weibull modulus, of (�9 
fibre strength and (0) number of breaks in an SFC specimen, using 
unimodal distribution (gauge length 22mm, scale parameter 
4142 MPa). 

model with Equat ions  7 and 8 are presented. Fig. 4 
shows the predicted values for the max imum strengths 
of the fibre, and the ma x i mum number  of breaks as a 
function of Weibul l  modulus,  m. U n i m o d a l  Weibull  
dis t r ibut ion (Equat ion 12) is used, with gauge length 



at 22 mm and scale parameter, s o, fixed at 4142 MPa. 
It is clear from the figure that the predicted maximum 
strength of the fibre, which is considered the fibre 
strength at the critical length, decreases as the Weibull 
modulus increases. But, the maximum number of fibre 
breaks also increases slightly as the Weibull modulus 
is increased. This result emphasizes that the strength 
distribution term in Equation 8 has a strong influence 
on the fragment distribution. Therefore, the best fit 
model of the strength distribution is required in order 
to obtain reasonable strength predictions from the 
equations. 
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F i g u r e  5 Predicted cumulative number of fibre breaks in SFC 
specimens at increasing breaking strengths for AZ-coated AU fibres 
using unimodal distribution of fibre strengths at gauge lengths 
(a) 22 ram, (b) 10 mm, (c) 6.5 mm and (d) 3 mm. 
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F i g u r e  6 Predicted cumulative number of fibre breaks in SFC 
specimens at increasing breaking strengths for AZ-coated AU fibres 
using bimodal distribution of fibre strengths at gauge lengths 
(a) 22 mm, (b) 10 mm, (c) 6.5 mm and (d) 3 mm. 

This is further examined in results presented in Figs 
5 and 6 for predicted cumulative fibre fragment dis- 
tributions as functions of the measured strength at 
different gauge lengths for the AU fibre coated by AZ 
solution. These distribution curves are obtained by 
integrating Equations 7 and 8 with unimodal (Fig. 5) 
and bimodal (Fig. 6) Weibull statistics. Comparing 
these figures, it is seen that in Fig. 5 the fragment 
distribution curves for different gauge lengths show 
more deviation between themselves in the slope and in 
the maximum number of breaks, than in Fig. 6. The 
slopes of the fragment distribution curves in Fig. 5 
increase with increase in the Weibull modulus, m, at 
different gauge lengths (Table III). Here again is the 
clear indication that the fibre fragment distribution 
obtained by simulation is influenced by the fibre 
strength distribution. Also, the bimodal distribution is 
found to be a better fit to experimental data than the 
unimodal distribution. Consequently, simulation res- 
ults at any tested gauge length can be easily obtained 
using bimodal distribution. 

Consistent with these observations, the same trends 
were observed for the case of AU fibre coated by ZNP 
solution. As before, the cumulative fibre fragment 
distributions, as functions of fibre strength, were pre- 
dicted by numerically integrating Equations 7 and 8 
using the experimental strength data. In this case also, 
less deviation was observed among the data obtained 
from different gauge lengths, when the bimodal dis- 
tribution term is used in Equation 8, and the slopes 
are also steeper, than when the unimodal distribution 
term is used. Furthermore, the distribution curves fall 
close to each other when the Weibull moduli of the 
strength data are about the same at gauge lengths 10  
and 3 mm (Table IV). From these results, it is clear 
that the fragment distribution is influenced by the 
Weibull modulus of the fibre strength. 

5.3. Fibre strength prediction at short 
gauge lengths 

The predicted fibre strengths at the critical length 
estimated by numerical simulation for the AU fibre 
coated by AZ and ZNP solutions are shown in Figs 7 
and 8, respectively. All data shown in Figs 7 and 8 are 
based on tensile strength tests of single fibres. The 
mean tensile strength of the fibres at each of four 
different gauge lengths is plotted in the figures, and the 
straight line is obtained using linear regression of the 
strength data with respect to the logarithm of gauge 
length. Also plotted are the maximum fibre strengths 

T A B L E  II I  Simulation results using unimodal Weibull distribution for AZ-coated AU fibre at different gauge lengths, L 

L Size of Weibull parameter Strength" Number of 

(ram) samples m So(MPa) (MPa) fragments ~ 

22 38 4.81 3857 10 470 48 
10 39 5.81 4116 8 420 50 
6.5 40 4.75 4485 9 520 47 
3 38 5.7 5302 8 860 50 

a Estimated values. 
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TABLE IV Simulation results using unimodal Weibull distribution for ZNP-coated AU fibre at different gauge lengths, L 

L Size of Weibull parameter Strength ~ Number of 

(ram) samples m So(MPa) (MPa) fragments" 

22 40 5.48 4t42 9550 36 
10 40 7.23 4485 7790 38 
6.5 38 8.01 4664 7350 39 
3 39 7.09 5250 7760 38 

a Estimated values. 
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Figure 7 Predicted fibre strengths at the critical length (0.41 mm) 
using (�9 unimodal distribution and ([]) bimodal distribution of 
(A) experimental data at gauge lengths 22, 10, 6.5 and 3 mm for 
AZ-coated AU fibres. 
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Figure 8 Predicted fibre strengths at the critical length (0.553 ram) 
using (�9 unimodal distribution and (El) bimodal distribution of 
(A) experimental data at gauge lengths 22, 10, 6.5 and 3 mm for 
ZNP-coated AU fibres. 

at the critical lengths 0.41 mm (Fig. 7) and 0.553 m m  
(Fig. 8), estimated by numerical simulation using the 
bimodal distribution model with different gauge 
lengths. For  comparison, the maximum strengths es- 
timated using the unimodal distribution model are 
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also shown. The fibre strengths obtained using the 
unimodal distribution model give overestimated 
strengths compared to the extrapolated strength at the 
critical length using the experimental data. This illus- 
trates clearly that, in the case of fibres used in the 
present study, the unimodal distribution model is not 
a good fit to the experimental data. On the other hand, 
the fibre strengths estimated using the bimodal 
distribution model are in good agreement with the 
extrapolated strength. It is also clear from these obser- 
vations that Equations 7 and 8 are strongly dependent 
on strength distribution, and simulation results will be 
in good agreement with experimental data if the best 
fit model of strength distribution is applied. 

The simulation results using bimodal Weibull dis- 
tribution for AZ- and ZNP-coated fibres with different 
gauge lengths are included in Tables I and II, respect- 
ively. The values of the fibre strength at the critical 
length, estimated from data for each gauge length, are 
similar. The corresponding simulation results using 
unimodal distribution are shown in Tables I I I  and IV. 
Here the estimated strengths show large differences 
through the gauge lengths tested. It  is evident that the 
strength at the critical length could be predicted by the 
simulation model using bimodal strength distribution, 
thus obviating the need for extrapolation of data for 
many different gauge lengths. It  should be noted that a 
simulation model using the unimodal strength dis- 
tribution can also be a valid instance, though not in 
our case. Obviously, the choice of the appropriate 
model would be based on the experimental data for 
strength distribution. 

It is also of interest to follow the course of fibre 
fragmentation in SFC specimens. Fig. 9 illustrates the 
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Figure 9 Variation of average number of fibre breaks with extension 
of SFC specimens of AU fibre coated by (�9 AZ and (0) ZNP. 



T A B L E  V Weibull modulus  for the fragment distribution of ZNP-  and AZ-coated AU fibres in SFC specimens, experimental values and 

simulations at different gauge lengths, L 

L(mm) Weibull modulus (m) 

Z N P  coating AZ coating 

Unimodal  Bimodal UnimodaI Bimodal 

Simulation 

Experiment 

22 5.73 11.99 5.08 9.02 
10 7.39 10.54 6.11 9.18 
6.5 8.08 12.62 5.13 9.47 
3 7.24 12.95 5.99 10.27 

9.76 11.07 
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Figure 10 Weibull plot of fibre fragmentation in SFC specimens of 
AU fibre coa t edby  ( 0 )  AZ and (�9 ZNP. 

average number of fibre breaks plotted as a function of 
extension of the SFC sample for the fibres with differ- 
ent coatings. The number of breaks in the fibre are 
seen to increase as the elongation of the specimen 
increases. The mean of the maximum number of 
breaks in the SFC specimens of the fibre coated by AZ 
solution is 53 and that for the fibre coated by ZNP 
solution is 39. Fig. 10 shows the plots of ln[ - ln(1 
- f ) ]  as a function of In (extension) for both fibres in 

the SFC tests. The cumulative probability of the fibre 
breaks is estimated with f =  NI/N ~ where N T is the 
total number of fibre breaks and Ni is the number of 
breaks at a certain extension. The experimental data 
show some deviation from the estimated lines. This is 
most likely due to debonding of the fibre during 
extension. When debonding starts, there is no linear 
relationship between the stress transferred to the fibre 
and the extension of the SFC specimen. 

Table V presents the Weibull modulus, m, for the 
fragment distribution of the AU fibre with different 
coatings in the SFC test along with simulations for 
different gauge lengths. The modulus values for differ- 
ent gauge lengths obtained from simulations using the 
bimodal distribution model are less deviant among 
themselves for different gauge lengths than those ob- 
tained using the unimodal distribution model. 

6. Conc lus ions  
The exact theory of fibre fragmentation in SFC speci- 
mens [10] can be suitably modified to take into 
account the bimodal distribution of fibre strength, 
which usually occurs with carbon fibres. The statist- 
ical factors are thus more completely represented in 
the modified theory. 

The application of the theory is illustrated for two 
differently coated AU fibres, one by AZ and another 
by ZNP solutions both of which show bimodally 
distributed fibre strengths, and a strong dependence of 
strength population fractions on gauge length. For 
such cases, it is demonstrated that simulation using 
the bimodal strength distribution term instead of a 
unimodal term yields better agreement with experi- 
mental data, through all gauge lengths studied. 

The important conclusion is that the fibre strength, 
at the critical length, which is impossible to measure 
with currently available experimental methods, can be 
predicted accurately using this simulation theory. Not 
only is the prediction reasonably accurate compared 
to extrapolation of experimental data, but simulation 
also eliminates the need for extensive data collection 
at different gauge lengths, which would be required for 
extrapolation. 

It should also be pointed out that, where the fibre 
strength is bimodally distributed, the use of unimodal 
distribution in the simulation theory will overestimate 
the strength at the critical length, which would be 
undesirable for practical considerations. 

R e f e r e n c e s  
1. M. NARKIS,  E. J. H. CHEN and R, B. PIPES, Polym. 

Compos. 9 (1988) 245. 
2. A. KELLY and N. R. TYSON, J. Mech. Phys. Solids 13 (1965) 

329. 
3. L .T .  DRZAL, M. J. RICH and P. F. LLOYD, J. Adhes. 16 

(1982) 1. 
4. A .S .  CRASTO, S. H, OWN and R. V. SUBRAMANIAN,  

Polym. Compos, 9 (1988) 78. 
5. A. N. NETRAVALI,  R. B. HENSTENBURG,  S. L. 

PHOENIX and P. SCHWARTZ,  ibid. l0 (1989) 226. 
6, W.D.  BASCOM and R. M. JENSEN, J. Adhes. 19 (1986) 219. 
7, J . D . H .  HUGHES,  J. Phys. D Appl. Phys. 20 (1987) 276, 
8. R.B.  H E N S T E N B U R G  and S. L. PHOENIX,  Polym. Com- 

pos. 10 (1989) 389. 
9. W . A .  FRASER, F. H. ANCKER, A. T. DIBENEDETTO 

and B. ELBIRLI,  ibid. 4 (1983) 238. 

4 4 9 5  



10. W.A.  CURTIN,  J. Mater. Sci. 26 (1991) 5239. 
11. D . J .  JOHNSON,  J. Phys. D Appl. Phys. 20 (1987) 386. 
12. J .W.  H 1 T C H O N a n d D .  C. PHILLIPS,FibreSe i .  Technol. 12 

(1979) 217. 
13. S. C. BENNETT,  D. J. JOHNS ON and w.  JOHNSON,  

J. Mater. Sei. 18 (1983) 3337. 
14. S. If. OWN, R. V. SUBRAMANIAN and S. C. SAUNDERS,  

ibid. 21 (1986) 3912. 
15. K. GODA and H. F U K U N A D A ,  ibid. 21 (1986) 4475. 
16. C .P .  BEETZ Jr, Fibre Sci. Technol. 16 (1982) 45. 

1% R.V. SUBRAMANIAN and E. A. NYBERG, J, Mater. Res. 7 
(1992) 677. 

18, W. WEIBULL,  J. Appl. Mech. 18 (1951) 293. 
19. S .N.  PATENKAR,  J, Mater. Sci. Lett. 10 (1991) 1176. 
20, J.B. DONNET and R. C. BANSAL,"Carbon Fibres" (Marcel 

Dekker, New York, 1990) p. 289. 

Received 2 June 1992 
and accepted 3 February 1993 

4496 


